A Review of Bone Health Issues in Oncology

David L. Kendler MD FRCPC CCD Professor of Medicine (Endocrinology) University of British Columbia Vancouver Canada

Disclosures

 David Kendler has received research grants, speaking honoraria, and/or consultancies from Amgen, Merck, Astrazenica, Astellis, and Eli Lilly

Objectives:

 Challenging real-life cases in oncology (focus on breast cancer and aromatase inhibitor therapy)

- Risk assessment
- Required testing
- Diet and lifestyle
- Treatment options
- Risks and benefits of therapy

Case History: Jean Smith 3 months after Colles fracture

67 year old woman

- She has just returned to you after having Colles fracture from a fall from standing height
- ER(+) breast cancer age 60 with surgery, radiation, tamoxifen 5 years and now letrazole 2 years
- Concerned more about breast cancer than osteoporosis and fracture

Lifetime risk at the age of 50

	Women	Men		
Osteoporotic fracture ^{1,2}	46-53%	21-22%		
Hip fracture ^{2,3}	15-23%	5-11%		
Radiographic vertebral fracture ⁴	27%	11%		
Clinical vertebral fracture ²	15%	8%		
Breast cancer	10-13%			
Prostate cancer	9-1	11%		
	NB: variable between countries			

¹Van Staa TP et al (2001) Bone 29: 517 ²Kanis JA et al (2000) Osteoporos Int 11: 669 ³Samelson EL et al (2007) J Bone Miner Res 22: 1449 ⁴Samelson EL et al (2006) J Bone Miner Res 21: 1207

"Approximately

of people with 1 osteoporotic fracture will have another, with the risk of new fractures rising exponentially with each fracture."

- International Osteoporosis Foundation

IOF. The breaking spine. http://www.iofbonehealth.org/sites/default/files/PDFs/WOD Reports/2010_the_breaking_spine_en.pdf.

Bone loss and fracture risk associated with cancer therapy T.A. Guise, The Oncologist 2006

Cancer treatment

Breast Cancer Increases Fracture Risk Results of the WHI observational study

Prospective cohort study with 5.1 years of follow-up¹
5,298 breast cancer survivors in WHI study
80,848 reference population with no history of cancer
Adjustment for age, weight, and ethnicity
Women with history of BC had a 31% increased risk of fracture

WHI = Women's Health Initiative. 1. Chen Z, et al. *Arch Intern Med.* 2005;165:552-558.

Effect of tamoxifen on BMD measured by DXA in pre- versus post-MP women

Powles et al., JCO 1995

n = 179 (**Tam** 20 mg/d vs placebo 3 yrs; clemoprevention trial of breast cancer)

PostMP PreMP Lumbar 104 BMD 100 96 92 Hip 106 BMD 100 94 2

Influence of AI on fracture and osteoporosis risk No head to head studies

F/U, follow-up; NS, not significant; ATAC, Arimidex tamoxifen alone or in combination; IES, intergroup exemestane study; BIG 1-98, breast international group 1-98 collaborative group; TEAM, tamoxifen exemestane adjuvant multinational.

Hadji P. et al. BoneKey Reports (2015); 4 (692)

Fracture incidence of postmenopausal healthy and BC women on TAM and AI

Schmidt N. and Hadji P. et al. Breast Cancer Res Treat. 2016 Jan;155(1):151-7

Case History: Jean Smith and BMD results

67 year old woman with Colles fracture on AI for breast cancer

New information:DXA femoral neck T-score = -2.3

Definitions of osteoporosis

» Osteoporosis can be defined clinically and by DXA

Clinical definition: Fragility fracture especially hip or spine

–Densitometric definition: T-score
–2.5 at spine, total hip or femoral neck (or 1/3 radius) in a postmenopausal woman or man over age 50

Fracture Rates, Population BMD Distribution and Number of Fractures

Adapted from Siris ES, et al: JAMA 2001; 286:2815-22.

FRAX Risk Factors

Age (40-90), sex and clinical risk factors

- BMI/DXA
- Prior fragility fracture
- Parental history of hip fracture
- Current tobacco smoking
- Ever long-term use of glucocorticoids (> 3mo and > 5mg/d)
- Rheumatoid arthritis or other secondary causes
- Alcohol intake 3 or more units daily

Case History: Jean Smith and 10 year Absolute Fracture Risk

67 year old woman with low bone density (osteopenia), AI for breast cancer

– Femoral neck T-score = -2.3

New information:

- Risk factors
 - History of Colles fracture, on AI for breast cancer
 - Maternal hip fracture
 - Used Prednisone for 1 year in the past for Polymyalgia Rheumatica

http://www.shef.ac.uk/FRAX/

FRAX [®] WHO Fracture Risk Assessment Tool									
Home	Calculation Tool	Paper Charts	FAQ	References	English				
Calculation Too Please answer the questions	below to calculate th	e ten year probability of fractu	re with BMD.						
Country: Canada	Name/ID:		About the risk factor	rs 17					
Questionnaire: 1. Age (between 40 and 90 year Age: Date of Birth: 67 Y: 2. Sex	s) or Date of Birth M: D: O Male O Female	 10. Secondary osteoporosis 11. Alcohol 3 or more units/day 12. Femoral neck BMD (g/cm²) T-Score -2.3 	 No Yes No Yes 		Weight Conversion Pounds kg Convert				
3. Weight (kg)	60	Clear Calc	ulate		Height Conversion				
 Height (cm) Previous Fracture Parent Fractured Hip Current Smoking 	160 No Yes No Yes No Yes	BMI: 23.4 The ten year probability of fractu with BMD Major osteoporotic	re (%)		Inches 🔶 cm				
 8. Glucocorticoids 9. Rheumatoid arthritis 	No● Yes● No● Yes	Hip Fracture If you have a TBS value, click h	9.2 ere: Adjust with TBS		00472278 Individuals with fracture risk assessed since 1st June 201				

FRAX: Jean Smith's Risk Calculation

High risk = 10-year osteoporosis fracture risk over 20% or hip fracture risk over 3%

Case history: Jean Smith Treatment Guidelines

• 67 year old woman with low bone density (osteopenia)

- Femoral neck T-score = -2.3
- History of Colles fracture, on AI for breast cancer
- Maternal hip fracture
- Used Prednisone for 1 year in the past for Polymyalgia Rheumatica
- FRAX MOF 43%, HF 9.2%
- Does she meet guidelines criteria for treatment?

North American Menopause Society 2010 Treatment Recommendations

Postmenopausal women and men over age 50:

- A hip or vertebral (clinical or morphometric) fracture
- T-score \leq -2.5 after excluding secondary causes
- Low bone mass (-1 to -2.5)

10 year probability of hip fracture $\geq 3\%$

Or of any osteoporosis fracture $\geq 20\%$

based on the Canadian-adapted WHO algorithm

Menopause: The Journal of The North American Menopause Society 2010 17;1, 25-54

Case History: Jean Smith and Calcium/Vit D

• 67 year old woman with low bone density (osteopenia)

 Femoral neck T-score = -2.3, Colles fracture, on AI for breast cancer, maternal hip fracture, past prednisone for Polymyalgia Rheumatica; FRAX 43/9.2

New information:

 She is taking 1500mg of supplement elemental Ca, 4 dairy servings, and 400IU of Vitamin D daily

Calcium and Vitamin D: OC Guidelines for Women and Men over age 50

Calcium (from diet and supplement) » 1200 mg/day

Vitamin D

- » 800 2000 IU/day
- » Can use dosing weekly or monthly
- » Vitamin D3 better than D2

1. Brown JP, Josse RG. *CMAJ*. 2002;167(10 Suppl):S1-S34. 2.Hanley DA, Cranney A, et al. for the Guidelines Committee on the Scientific Advisory Council of Osteoporosis Canada. *CMAJ* 2010;1-9. DOI:10.1503/cmaj.091062 .3. Bischoff-Ferrari HA, et al. *Arch Intern Med*. 2009;169:551-561.

Jean Smith

» 67 year old woman with low bone density (osteopenia), Femoral neck T-score = -2.3, Colles fracture, on AI for breast cancer, maternal hip fracture, past prednisone for Polymyalgia Rheumatica; FRAX 43/9.2 taking appropriate Ca and Vitamin D

Does she need any laboratory testing?

Screen for Secondary Etiologies of Osteoporosis

- » CBC diff (thalassemia, anemia)
- » Ca, PO4 (hyperparathyroidism, malabsorption)
- » ALP (Paget's, liver disease, osteomalacia, fracture)
- » eGFR (renal osteodystrophy, renal clearance for BP)
- » TSH (hyperthyroidism)
- » Maybe SPEP (myeloma)
- » Maybe 25 OH Vitamin D after > 3 months on 2000IU/d (Vit D deficiency or insufficiency)

Case History: Jean Smith's Treatment Options

» 67 year old woman with low bone density (osteopenia), Femoral neck T-score = -2.3, Colles fracture, on AI for breast cancer, maternal hip fracture, past prednisone for Polymyalgia Rheumatica; FRAX 43/9.2 on Ca and Vitamin D

New information:

» No secondary cause of osteoporosis

What medications will reduce her fracture risk?

Treatment Strategies for Osteoporosis

Mild Osteoporosis

Antiresorptive Therapy (Bisphosphonate, estrogen, calcitonin, denosumab or SERM)

Normal bone

Severe Osteoporosis Bone Anabolic therapy

(teriparatide)

Antiresorptive Therapy

Osteoporosis

Osteoporosis Canada Guidelines: Therapy

» First line therapies

 Alendronate, Risedronate, Zoledronic acid, Estrogen, Raloxifene, Denosumab and Teriparatide

First Line Therapies with Evidence for Fracture Prevention in Postmenopausal Women*

Type of Fracture	Antiresorptive Therapy						
	Bisphosphonates					Estrogen**	Teriparatide
	Alendronate	Risedronate	Zoledronic Acid	Denosumab	Raloxifene	(Hormone Therapy)	Tonparanao
Vertebral	√	√	√	√	√	√	√
Нір	√	√	√	√	-	√	-
Non-vertebral [†]	√	√	√	√	-	√	1

What are the Key Considerations in Choosing a Therapy?

- Efficacy
 - Fracture reduction: hip, vertebral, non vertebral
- Side effects / intolerance
- Adherence (compliance and persistence)
- Convenience and preference
- Cost and Access

Effect of 3 Years of Treatment With Denosumab on Fractures in Women With PMO: FREEDOM

Effects of Denosumab Treatment on Lumbar Spine BMD and New Vertebral Fractures Through 10 Years

Placebo

Long-term Denosumab

🔀 Cross-over Denosumab

BMD data are LS means and 95% confidence intervals. ^a*P* < 0.05 vs FREEDOM baseline. ^b*P* < 0.05 vs FREEDOM and Extension baselines. ^cPercentage change while on denosumab treatment. ^dAnnualized incidence: (2-year incidence) / 2. Lateral radiographs (lumbar and thoracic) were not obtained at years 4, 7, and 9 (years 1, 4, and 6 of the Extension).

Effects of Denosumab Treatment on Total Hip BMD and Nonvertebral Fractures Through 10 Years

BMD data are LS means and 95% confidence intervals. $^{a}P < 0.05$ vs FREEDOM baseline. $^{b}P < 0.05$ vs FREEDOM and Extension baselines. c Percentage change while on denosumab treatment. Percentages for nonvertebral fractures are Kaplan-Meier estimates.

CTIBL Breast Cancer

- » Aromatase inhibitor (AI) therapy has greatly benefitted high risk ER+ breast cancer (BC) patients in reducing recurrence rates. Treatment is usually continued over many years.
- » Als reduce circulating estradiol; even low levels of estradiol in postmenopausal women are important for bone health
 - All clinical trials of AI show decreases in bone density (BMD)
 - Clinical fractures in patients on AI are increased to a greater degree than one would expect from the modest declines in BMD
 - Different fracture locations are seen in patients on AI as compared with PMO (hip and ankle v. spine and wrist)
 - BC clinical trials collected fracture by adverse event reporting; dedicated fracture trials show 5-year clinical fracture incidence of 18%, double the rate reported in BC trials

CTIBL Breast Cancer

- » Risk calculators (FRAX) do not capture the excess fracture risk from Als
- » Many treatment algorithms for patients on AI recommend antiresorptive therapy if BMD T-score < -2; or < -1.5 if another risk factor is present</p>
- » Potential therapies for CTIBL include oral and iv bisphosphonates, and denosumab
- » Clinical trials of ZOL suggest superior protection from bone loss when ZOL is given before AI initiation; no antifracture efficacy has been demonstrated. For CTIBL, ZOL 4mg iv 6-monthly was used.
- » Smaller clinical trials of oral bisphosphonates (ALN, IBN and RIS) have shown BMD effectiveness in preventing CTIBL but no fracture data

Upfront Zoledronic Acid Increases BMD in Spine/ and Hip: ZO-FAST Study (no fracture efficacy)

DeBoer R. et al. SABCS 2010 San Antonio

AI: Effect of Denosumab on Lumbar Spine Bone Mineral Density

Ellis G, et al. J Clin Oncol 2008

ABCSG18 AI Fracture Risk with Dmab v. PBO

3425 breast cancer patients on aromatase inhibitor randomized to demand or placebo

AI TIBL Disease Free Survival (DFS)

Breast cancer DFS and antiresorbtive therapies

- » Metastatic BC has likely spread before surgical resection
- » Antiresorptive therapy benefits to BC DFS may be due to changes in the bone environment making it unfavourable to breast cancer cells
- » Meta-analysis of BP studies indicates likely BC DFS benefit of BP is restricted to PMP women

Stages of BC bone metastases

R.E. Coleman et al. / The Breast 22 (2013) S50eS56

Breast cancer recurrence by menopausal status: Metaanalysis of BP studies

R.E. Coleman et al. Lancet 2015 386: 1353-61

Breast cancer mortality by menopausal status: Metaanalysis of BP studies

Breast cancer on AI Disease Free Survival: Dmab v. PBO. ABCSG18

Gnant M et al. SABC 2015 Abstract

Case History: Jean Smith and Long Term Treatment Issues after 5 yr on ALN, now off Al

» 67 year old woman with low bone density (osteopenia), FN T-score = -2.3, Colles fracture, on AI for breast cancer, maternal hip fracture, prednisone for Polymyalgia Rheumatica, FRAX 43/9.2, taking Ca and Vitamin D, no secondary cause of osteoporosis, on alendronate for 5 years.

New information:

-Off Al

-Follow-up 5 years later shows FN DXA increased 5%. Now, FN T-score = -1.9

FLEX — Total Hip BMD Changes From FIT Baseline (mITT)

Mean Percent Change (± SE) in Total Spine BMD From Original FIT Baseline

Black DM, et al. NEJM 356;18:1809-22

Continuing or Stopping Alendronate After 5 Years (FLEX): Clinical Vertebral Fractures

Adapted from Black DM, et al: JAMA 2006; 296(24):2927-38.

How long should antiresorptive therapy be continued?

- » Sustained efficacy
- » Sustained safety
- » Resolution of effect (ROE)
 - Incorporation of BP in bone long-term
 - -With ALN and ZOL long resolution of effect
 - With all others, short ROE
- » Continue treatment as long as patient remains at risk
 - If, after 5 yr on ALN OR ZOL, BMD T-score < -2.5 or prevalent hip/spine fracture: NO DRUG HOLIDAY

Chalk Stick Fracture

Lenart. NEJM 2008

Atypical (Subtrochanteric) Fractures With Antiresorptive Therapy

ASBMR Task Force Definition¹:

Major Features*

- » Subtronchateric
- » Minimal trauma
- » Transverse configuration
- » Non-comminuted
- Complete fractures through both cortices (may be associated with a medial spike)
- » Beaking

Image from: Lenart BA, et al. N Engl J Med. 2008;358:1304

1. Shane E, Burr D, et al. Atypical Subtrochanteric and Diaphyseal Femoral Fractures: Report of a Task Force of the American Society for Bone and Mineral Research. JBMR, 2010; On line Sept 7, 2010. DOI 10.1002/jbmr.253 2. Lenart BA, et al. N Engl J Med. 2008;358:1304

Atypical (Subtrochanteric) Fractures With Antiresorptive Therapy

ASBMR Task Force Definition¹:

Minor Features*

- » Increase in cortical thickness
- » Prodromal symptoms
- » Bilateral fractures
- » Delayed healing
- » Comorbid conditions
- » Use of pharmaceutical agents (e.g., BPs, GCs, proton pump inhibitors)

Image from: Lenart BA, et al. N Engl J Med. 2008;358:1304

*None of the Minor Features are required but have been sometimes associated with these fractures.

1. Shane E, Burr D, et al. Atypical Subtrochanteric and Diaphyseal Femoral Fractures: Report of a Task Force of the American Society for Bone and Mineral Research. JBMR, 2010; On line Sept 7, 2010. DOI 10.1002/jbmr.253 2. Lenart BA, et al. N Engl J Med. 2008;358:1304

Bisphosphonates Prevent Hip Fractures

Expected Hip Fractures in 10,000 Patients at High Risk¹

Bisphosphonates potentially double subtrochanteric fractures (typical or atypical)¹

Hip fractures cause a high rate of morbidity and mortality^{2,3} Incidence of subtrochanteric fracture very low

ONJ: Clinical Description

» Exposed bone in maxillofacial area that occurs in association with dental surgery or occurs spontaneously, with no evidence of healing*

Working Diagnosis of ONJ

- No evidence of healing after
 8 weeks of appropriate evaluation and dental care
- » No evidence of metastatic disease in the jaw or osteoradionecrosis

Relative Risk/Benefit

Risk comparisons

- 1. Transportation Canada. 2007 Casualty Rates.
- 2. Statistics Canada. 2009 Homicide Rate.
- 3. Khan A, et al. ASMBR, Toronto, 2010. Poster SA0384.
- 4. Dell R, et coll. JBMR 2010. 25(Suppl1):61. Abstract 1201
- 5. Johnell O, Oden A, Caulin F, Kanis JA. Osteoporos Int. 2001;12(3):207-14.

Guidelines for cancer treatment-induced bone loss

IOF 2013 algorithm for managing bone health on Al

ESMO 2014 algorithm for managing bone health during cancer treatment

